Metadichol ® a novel nano lipid formulation that inhibits In Vitro, SARS-COV-2 and a multitude of pathological viruses

P. R. Raghavan	\bigwedge
Nanorx Inc	
P.O. Box 131	\nearrow
Chappaqua, NY 10514	\searrow
USA ((
email: raghavan@nanorxinc.com	5
	>

Abstract;

New pathogenic virus outbreaks with increasing regularity are leading us to explore novel approaches, which will reduce the reliance on a time-consuming vaccines mode to balt the strike. The requirement is to find a universal approach to disarm any new and as yet unknown viruses as they appear. A promising approach could be by targeting the lipids memoranes, common to all viruses and bacteria.

The ongoing pandemic of the SARS-coronavirus 2 (SARS-CoV-2) has restated the importance of interactions between components of the hest cell plasma membrane and the virus envelope as a key mechanism of infection. Metadichol \mathbb{R} , a nano lipid emulsion has been examined and shown to be a strong candidate to help stop the proliferation of the SARS-COV-2.

Naturally derived substances, such as Cyclodextrin and sterols, reduce the infectivity of various types of viruses, including the coronavirus like TMPRSSC SARS, S

Metadichol®, a nano lipid formulation of long chain alcohols, has been shown to inhibit TMPRSS2 (EC50 of 96 ng/ml). Compared to the inhibitor Camostat Mesylate (26000 ng/ml), it is 270 times more potent. In addition, Metadichol @ is a moderate inhibitor of ACE2 @ 31 µg/ml.

In the SARS-COV2 anti-yiral assay assay using CACO2 cells it has an EC90 of 0.16 μ g/ml.

Key words: Coronavirus, SARS-COV-2, COVID-19, ACE2, TMPRSS2, VDR, Metadichol

Introduction

Over the last few decades there has been an increasing need for a broad spectrum antimicrobial agent which could inactivate human pathogens such as bacteria and viruses. This approach has been propelled by the rapid resistance by microorganisms to focused drugs. The most recent trigger is the fear of a future pandemic caused by new, poorly studied virulent strains, like the present SARS-COV-2.

Background to SARS-COV-2

The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) (COVID-19), is a pandemic ¹, which has caused global havoc within a few months. To medically control a rapidly spreading viral pandemic utilizing specific Antivirals and vaccines will be prove expensive, time consuming and carries with it compromise on the safety and efficacy. To circumvent this, an alternative is to test nolecules which are already proven safe, and tested to be effective against SARS-QOV-2. This is the approach taken by a number of researchers, independently or with Government backing Among the candidates being tested are Camostat mesylate (a 35year Japanese drug) Avigan (another Japanese Drug) and Gilead Science Inc's Remdesivir ² To enter a host cell, the SARS COV-2 needs TMPRSS2³, a serine protease and ACE 2⁴ to bind and thus facilitate its entry. Blocking both receptors, could in principle lead to a comprehensive block of the primary 'host-cell entry' mechanism used by the virus.

TMPRSS2 is a serine protease that primes the spike protein of SARS-CoV, and the Middle East respiratory syndrome-related coronavirus (MERS-CoV). Camostat mesulate (CM), an inhibitor of TMPRSS2, inhibited SARS-CoV in a mouse model ^{5,6} Hoffmann et al.⁷ determined that the SARS-CoV-2 requires TMPRSS2. Using a sample of SARS-CoV-2 virus isolated from a patient, they showed that CM blocks the entry of the virus into the lung cells. However, to date, there are no clinical data on the use of the CM in blocking or at least reducing viral spread and pathogenesis of CoVs.

The other receptor used by viruses to gain entry into the host cell is ACE2. SARS-CoV-2 has a spike (S) protein on its viral envelope (exterior), that binds to the transmembrane protein angiotensin-converting enzyme 2 (ACE2), which is present in human cells. ACE2 protein is essential for viral entry. However, ACE2 also regulates blood pressure and blood volume; blocking this entirely would be detrimental. A solution that partially regulates ACE2 in concert with inhibition of TMPRSS2 would thus be an ideal solution.

Lipids and Viruses

Viral envelope lipid plays a role in both viral stability as well as its infective capabilities. For example, substances that affect the lipid envelop like Phospholipases, organics solvents and surfactants like soaps have shown to affect the viral infectability. Causing envelope disintegration, they stop the virus transmission to a new host. Active ingredients ⁸ in a number of the cleaning agents, wipes and tissues target the viral lipid envelop to render the virions non-viable. Snipes and coworkers ⁹ showed that viruses can be inactivated by saturated alcohols with chain lengths from 10 to 14 carbons. Their studies established that inactivation of enveloped viruses by lipids varies greatly, depending on both the nature of the lipid and the type of virus. Hilmarsson et al. ^{10,11,12} studied the virucidal effects of medium- and long-chain (8 to 18 carbon) fatty alcohols and corresponding lipids against HSV-1 and HSV-2 respiratory syncytial virus (RSV) and human virus type 2 (HPIV2) and enveloped viruses, at various concentrations, times and pH levels. After 10-minute incubation at 37°C and 10 mM concentration, 14 of the lipids tested caused a 100 000-fold or greater reduction in HSV titer. Testing between pH 7 and 4.2, they showed that the pH to 4.2 caused a more rapid inactivation of HSV-1 virus titre in one minute. These long chain alcohols may act by penetrating the

envelope of the virus by hydrophobic effect, making it permeable to small molecules and thus inactivating the virus, the degree of penetration into lipid membranes due to the chain length of a lipid compared with the thickness of the membrane. ¹³

Metadichol is a nano lipid formulation of long chain alcohols¹⁴. Metadichol has been shown to inhibit viruses in vitro and in vivo ^{15,16,17}. Metadichol was tested for it inhibitory actions against ACE2, TMPRSS2 and anti-viral assay with SARS-COV-2.

Experimental Methods

All assays were on a fee for service contract basis and outsourced to Bioanalytical testing companies worldwide. Antiviral assay was done by a Bio Safety level 3 (BSL3) facility in USA.

Anti-Viral assay

Metadichol was serially diluted using eight half-log dilutions in test medium (MEM supplemented with 2% FBS and 50μ g/mL gentamicin) so that the starting (high) test concentration was 100 μ g/ml. Each dilution was added to 5 wells of a 96-well plate with 80-100% confluent CACO-2 cells.

Three wells of each dilution were inoculated with virus, with two wells uninoculated (as toxicity controls), six wells were inoculated and untreated (as virus controls), and six wells were uninoculated and untreated (as cell controls). SARS-CoV-2 virus was prepared to achieve the lowest possible multiplicity of infection (MOI) that would yield >80% cytopathic effect (CPE) within 3 days. M128533 (Protease inhibitor specific for SARS virus.) was tested in parallel as a positive control. Plates were incubated at $37\pm2^{\circ}$ C, 5% CO2. On day 3 post-infection, once untreated virus control wells reached maximum CPE, plates were stained w ith neutral red dye for approximately 2 hours (±15 minutes) (Supernatant dye was removed, and wells rinsed with PBS, and the incorporated dye was extracted in 50:50 Sorensen citrate buffer/ethanol for >30 minutes and the optical density was read on a spectrophotometer at 540 nm.

Optical densities were converted to percent of cell controls and the concentration of compound that would cause 50% cell death (CC50) in the absence of virus was calculated by regression analysis. The selective index (SI) is the CC50 divided by EC90. Results in Table 1

	Table 1. In vitr	o antiviral results	
	CC50	EC90	SI90
Metadichol (ug/ml)	4	0.15	20
M128533 (µg/ml)	>10	0.2	>33

CC50, 50% cytotoxic concentration of compound without virus added, EC50: 50% effective antiviral concentration EC90: Calculated concentration to reduce virus yield by 1 log (90%), SI = CC50/EC50

For virus yield reduction (VYR) assay, the supernatant fluid from each compound concentrations was collected on day 3 post infection, before neutral red staining (3 wells pooled) and tested for virus titer using a standard endpoint dilution CCID50 assay in Vero 76 cells and titer calculations using the Reed- Muench

(1948) equation. The concentration of compound required to reduce virus yield by 1 log10 was calculated by regression analysis (EC90). The selective index (SI) is the CC50 divided by EC90.

Metadichol Concentration Titer (µg/ml)	Cytotoxicity (%)	Virus Titer (CCID50 per 0.1 ml)
100	100%	<0.7
32	100%	<0.7
10	83%	~~~~~ < 0.7 ~ <
3.2	54%	0.7
1	17%	4.3
0.3	26%	
0.1	19%	
0.03		5.3

Table 2. Shows Cytotoxicity and virus yield data for each concentration of Metadichol tested

As shown in Table 2, the virus reduction assay did not follow a typical dose response, with virus reduction seen at concentration of 0.3 μ g/ml and 3.2 μ g/ml, but no reduction seen at a concentration of 1 μ g/ml. Assuming that breakthrough of virus at 1 μ g/ml was an outlier. The calculated SI ratio was 20 (Table 1), indicating EC 90 of 0.15 μ g/ml.

TMPRSS2 Inhibition assay

Procedure

TMPRSS purified from LNCaP cells (Cayman Chemicals) was used as an enzyme source. The reaction inixture contains the parified TMPRSS2 protease in TBS buffer with or without a range of various concentrations from 1.56 to 100 ng/ml of test sample or inhibitor. The reaction mixture was incubated for 10 mins and at 37°C. To the reaction mixture, 1µl of 10mM fluorogenic trypsin substrate Cbz-Gly-Gly-Arg-AMC was added and the kinetic fluorescence reading was recorded after 2 mins incubation at 37°C at 383ex and 455em at 5-10 mins using Spectramaxi3X, Molecular devices. Change in fluorescence (delta RFU) was calculated to determine the inhibitory effects of the test sample. Camostat mesylate at a two-fold range of concentrations from 1.56 to 100nM was used as a positive control for TMPRSS2 protease.

Results

Figure. 1.Camostat mesylate

Figure 2. Metadichol

ACE2 Inhibition assay

The ACE2 Inhibitor Screening Assay Kit, Catalog no 79923 (BPS biosciences, San Diego USA) was to measure the exopeptidase activity of ACE2 and inhibition by Metadichol and control inhibitor DX600. The inhibitory activity was measured based on the fluorescence emitted by the cleavage of the chromogenic substrate.

Procedure:

Enzyme (ACE2) stocks were prepared and from the supplied kit. 20μ l of enzyme solution (0.5ng/µl) was added to all the wells designated for the assay. DX600, a potent ACE2 inhibitor was used as a positive control for ACE2 inhibition at various concentrations ranging from 0.0156µg/ml to 1µg/ml. The test sample at a range of concentrations from 0.125µg/ml to 40µg/ml was used. To each well consisting of enzyme solution, 5µl of inhibitor solutions was added to respective designated wells. The reaction mixture was incubated at room temperature for 5 mins. Post incubation, 25µl ACE2 substrate was added to the mixture and incubated for 1µr at room temperature. The RFU of cleavage of the substrate was read at Ex555nm and Em585nm

using Spectramax i3x, Molecular devices. The IC50 values were calculated based on

Figure 3. Control DX600

Figure A. Metadichol

Discussion

The results reported open the gateway to effective and safe therapies for COVID-19. Metadichol inhibits ACE2 sufficiently to prevent SARS-CoV-2 entry into host cells. and at the same time the concentrations for inhibition of viral passage is not high enough to affect physiological functions the host.

The results also demonstrate Metadichol's direct anti-viral effect against SARS-COV-2 virus itself, in CACO-2 cells with an EC90 of 0.15 μ g/ml. Comparatively this result gives it a 2000 fold higher effectiveness than Remdesivir and 4000 fold potency over Hydroxy chlorogrine phosphate ¹⁸.

Metadichol also inhibits TMPRSS2, as is seen to be 270-fold more potent than Camostat Mesylate ¹⁹. Metadichol inhibits moderately ACE2 and, in combination with TMPRSS2 inhibition, likely leading to a pronounced synergistic effect in overcoming viral entry. The anti-viral assay shown in Table 8, suggest that it is toxic to cells at concentrations above 1 μ g/ml. but Metadichol is not toxic as the LD 50 is 5000 mg/kilo ^{20,21,22}. It is likely that Metadichol at higher concentrations behaves in a soap mimicking manner, by disrupting the lipid membrane and at lower concentrations it neutralizes the virus by a different mechanism. A previously published work (see ref 15) on anti-viral assay this same "toxicity" was seen and this is shown in Tables 5 and 6.

Raw data from Cytotoxicity of Metadichol without virus present in Vero cells as measured by Neutral red assay. When >75% "toxicity" occurred in the absence of virus, no viral CPE value was reported.

		\sim		\bigtriangleup	-1	\checkmark		
Units are µg/ ml unless noted			$'(\bigcirc)$					
µg/ml Metadichol	Adenovirus	Tacaribe	Rift valley	SARS	Japanese Encephalitis	West nile virus	Yellow Fever H	Powassan virus
500	35%	98%	96%	96%	100%	100%	100%	100%
160	92%	98%	96%	95%	100%	100%	100%	100%
50	90%	97%	97%	95%	100%	100%	100%	100%
16		95%	81%	92%	88%	77%	98%	100%
5		23%	26%	35%	33%	28%	35%	44%
1.6	20%	2%	10%	15%	12%	14%	19%	6%
0.5	0%	3%	9%	0%	2%	3%	2%	0%
0.16	0%	17%	3%	0%	0%	0%	4%	0%
CC50	9.90	7.30	8.40	6.70	7.20	8.50	5.00	5.1

Table 5. Metadichol assay without virus present in Vero cells

µg/ml Metadichol	Adenovirus	Tacaribe	Rift Valley Fever	SARS	Japanese Encephalitis	West Nile	Yellow Fever	Powassan
5	100%	31%	100%	0%	56%	84%	70%	53%
1.6	100%	69%	100%	52%	87%	100%	73%	100%
0.5	100%	97%	100%	100%	100%	100%	95%	100%
0.16	100%	100%	100%	100%	108%	100%	96%	100%
EC50	>9.9	2.8	>8.4	1.7	>7.2	>8.5	>5	>5.1

It is not toxicity of Metadichol on cell lines but rather it behaves as a "detergent " in neutralizing the SARS-COV-2 and other pathogenic viruses as shown in table].

Table 7. List of Viruses Inhibited by Metadichol In

Also, Metadichol® targets cancer cells in CACO-2 cells. In a previous study ²³ of Klotho gene expression of cancer cell/lines Mia-Paca, Colo 205 and Panc1, where it was also seen to be toxic to cell lines above 1 μ g/ml. It is also toxic to Leukemia CEM-SS cell lines above 5 μ g/ml ²⁴.

Vitamin D and its role in immunity and Cytokine storm in SARS-COV-2 infection.

An out of control inflammatory response to SARS-COV-2 is the major cause of disease severity and death in patients with COVID-19²⁵ and is associated with high levels of circulating cytokines, TNF, CCl2, NF- κ B, CRP, Ferritin. Metadichol (see Ref 14) is an inhibitor of CCl2 (also known as MCP-1), TNF, NF- κ B and CRP which, is a surrogate marker for cytokine storm ²⁶ and is associated with Vit D deficiency.

Vitamin D3 is produced in the skin through the action of UVB radiation, reaching 7-dehydrocholesterol in the skin, followed by a thermal reaction. Vitamin D3 is converted to 25(OH)D in the liver and then to 1,25(OH)2D (calcitriol) in the kidneys. Calcitriol binds to the nuclear vitamin D receptor, a DNA binding protein that interacts directly with regulatory sequences near target genes that participate genetically and epigenetically in the transcriptional output of genes needed for functioning ²⁷. Vitamin D reduces the risk of infections.by mechanisms that include inducing cathelicidins and defensins ^{28,29}, resulting in lowered viral replication rates and reducing concentrations of pro-inflammatory cytokines.

1,25(OH)2D reduced the replication of rotavirus both in vitro and in vivo by another process 28 . A clinical trial reported that supplementation with 4000 IU/d of vitamin D decreased dengue virus infection 30 . Inflammatory cytokines increase in response to viral and bacterial infections, as observed in COVID-19 patients [³⁰). Vitamin D can reduce the production of pro-inflammatory Th1 cytokines, such as tumor necrosis factor and interferon 31 .

Vitamin D is a modulator of adaptive immunity 3^2 and suppresses responses mediated by the T helper cell type 1 (Th1) by primarily repressing the production of inflammatory cytokines IL-2 and interferon-gamma (INF) 3^3 . Additionally, 1,25(OH)2D3 promotes cytokine production by the T helper type 2 (Th2) cells, which helps enhance the indirect suppression of Th1 cells by complementing this with actions mediated by a multitude of cell types 3^4 .

1,25(OH)2D3 promotes the T regulatory cells' induction, thereby inhibiting inflammatory processes ³⁵. It is known that COVID-19 infection is associated with the increased production of proinflammatory cytokines. Creactive protein, increased risk of pneumonia, sepsis, acute respiratory distress syndrome and heart failure ³⁶. Case fatality rates (CFR's) in China were 6%–10% for those with cardiovascular disease, chronic respiratory tract disease, diabetes, and hypertension ³⁷.

Telomerase and Viral infections

Metadichol increases h-TERT (telomerase) at one picogram by 16 fold ³⁸. Viral infection puts a significant strain on the body, CD8 T cells that mediate adaptive immunity ³⁹ to protect the body from microbial invaders, can easily reach their Hayflick limit by depleting their telomeres ⁴⁰. This is more so if telomeres are already short, then this is more likely to happen. Infections put enormous strain on immune cells to replicate. Naive T and B cells are particularly important when our bodies encounter new pathogens like the like COVID-19 coronavirus. The quantity of these cells is crucial for useful immune function.

Aryl Hydrocarbon receptor and Viral Infections

One of the major issues with infected COVID-19 patients has been respiratory failure. It has been suggested that Aryl Hydrocarbon receptor (AHR) is activated during corona virus infections, impacting anti-viral immunity and lung cells associated with repair ⁴¹. NF- κ B signaling via AHR may dampen the immune response against coronavirus ⁴². It has been reported that although some NF- κ B signaling is needed for coronavirus replication, excessive activation of this pathway may be deleterious for the virus. AHR limits NF-kB activation and interferes with multiple antiviral immune mechanisms, including IFN-I production

and intrinsic immunity. Yamada et al, ⁴³ suggested AHR (Constitutive aryl hydrocarbon receptor) signaling constrains type I interferon-mediated antiviral innate defense and suggested a need to block AHR constitutive activity and only an inverse agonist can dampen this. We have shown previously that Metadichol® binds to AHR as an inverse/protean agonist⁴⁴. Metadichol is an inverse/protean agonist (see Ref 14) of vitamin D receptor and thus can reduce complications attributed to out of control inflammation and cytokine storm.

Vitamin C and its role in viral infections

In infectious diseases, there is also a need to boost Innate and adaptive immunity. Micronutrients with the most robust evidence for immune support are vitamins C and D. Vitamin C is essential for a healthy and well functional host defense mechanism. The pharmacological application of vitamin C enhances immune function ⁴⁵. Vitamin C has antiviral properties leading to inhibition of replication of herpes simplex virus type 1, poliovirus type 1 ⁴⁵, influenza virus type A⁴⁶ and rabies virus in vitro.⁴⁷.

Vitamin C deficiency reduces cellular ⁴⁸⁻⁵² and humorakimmune responses, and treatment of healthy subjects promoted and enhanced natural killer cell activities ⁵³ underlining the immunological importance of vitamin C ^{54,55} and supports its role as a crucial player in various aspects of immune cell functions, such as immune cell proliferation and differentiation, besides its anti-inflammatory properties. Moreover, the newly characterized hydroxylase enzymes, which regulate the activity of the hypoxia-inducible factors (HIF), gene transcription, and cell signaling of immune cells, need vitamin C as a cofactor for optimal activity ^{56,57,58}.

Metadichol increases Vitamin Clevels endogenously by recycling Vitamin C and reaches levels not reached by oral intake. The levels reached bring about changes in improving diverse biomarkers. ^{59,60,61}.

Gene Cluster Network analysis

The present drug discovery paradigm is based on the idea of "one target, one disease." It has become clear that it is hard to achieve single target specificity. Thus, a need to transition from targeting a single gene to multiple targeting of genesis likely to be more active, leading to blocking multiple paths of disease progression 62,63.

Table 8. COVID-19 and 13 Curated genes

An analysis of the gene network analysis can provide a minimum set of genes that can form the basis for

\sim	$\left(\circ \right)$
(
\bigcirc	\mathcal{S}
\searrow	

CCL2	IL6	IL7
TNF	TMPRSS2	ACE2
IL10	CCL3	AGT
IL2	IL8	IL2RA
CSF3		

targeting diseases. This clustering network of genes can modulate gene pathways and biological networks. We used www.ctdbase.org ⁶⁴ that has curated genes relevant to COVID-19.

-						
	Disease Name	Disease Categories	P-value	Corrected P-value	Annotate d Genes Quantity	Annotated Genes
	COVID-19	Respiratory tract disease, Viral disease	4.49E-5 0	3.10E-47	13	ACE2,AGT,CCL2,CCL3,CSF3,C XCL10,IL10,IL2,IL2RA,IL6,IL7 ,TMPRSS2,TNF
	Pneumonia, Viral	Respiratory tract disease,Viral disease	6.28E-4 9	4.34E-46	13	ACE2,AGT,CCL2,CCL3,CSF3,C XCL10,IL10,IL2,IL2RA,BL6,IL7 ,TMPRSS2/TMF
	Coronaviridae Infections	Viral disease	2.51E-4 7	1.74E-44		ACE2,AGECCL2,CCL3,CSF3,C XCL0,IL10,IL2,IL2RA,IL6,IL7 ,TMPRSS2,TVF
	Coronavirus Infections	Viral disease	2.51E-4 7	1.74E.44		ACE2,AG7,CCL2,CCL3,CSF3,C XCL10,IL10,IL2,IL2RA,IL6,IL7 ,TMPR\$S2,TNF
	Nidovirales Infections	Viral disease	2.51E-4 7	1.7415-44		ASP2,AGT,CCL2,CCL3,CSF3,C XCL10,IL10,IL2,IL2RA,IL6,IL7 AMPRSS2,TNF
	RNA Virus Infections	Viral disease	7.125-3	4.92E-27		ACE2,AGT,CCL2,CCL3,CSF3,C XCL10,IL10,IL2,IL2RA,IL6,IL7 ,TMPRSS2,TNF
	Virus Diseases	Viral disease	2.542-2	1.73E-25	<i>₩</i>	ACE2,AGT,CCL2,CCL3,CSF3,C XCL10,IL10,IL2,IL2RA,IL6,IL7 ,TMPRSS2,TNF
	Sexually Transmitted Diseases, Viral	Viral disease	1.99E-1)5	1.38E-12		OCL2,CCL3,IL10,IL2,IL2RA ,IL6,TNF
	HIV Infections	Immune system disease, Viral disease	2.26E-1	1,56E-12		CCL2,CCL3,IL10,IL2,IL2RA, IL6,TNF
	Lentivirus Infections	Wral disease	2.26E-1 5	1.56E-12	7	CCL2,CCL3,IL10,IL2,IL2RA,IL 6,TNF
	Retroviridae Infections	Viral disease	2.26E-1 5	1.56E-12	7	CCL2,CCL3,IL10,IL2,IL2RA, IL6,TNF
<	HIV/Wasting Syndrome	Immune system disease,Metab olic disease,Nutriti on disorder,Viral disease	5.79E-0 7	4.00E-04	2	IL6,TNF
	Coxsackievirus Infections	Viral disease	1.45E-0 6	0.001	2	IL6,TNF
	Enterovirus Infections	Viral disease	6.36E-0 6	0.0044	2	IL6,TNF
	Picornaviridae Infections	Viral disease	7.52E-0 6	0.00519	2	IL6,TNF

Table 9 shows diseases impacted by the network of COVID-19 Curated genes.

Figure 5

We can filter the 13 genes to a set 4 genes: TNF, CGL2 ACE2 and TMPRSS2 are modulated by Metadichol and AGT that is part of RAS (Renin-Angiotensin System) network that ACE2 is part of (Figure 5). A similar analysis of these network genes shows that they are closely networked in diseases with a highly significant p value. These five genes are closely related and the network can be generated as shown below (Figure 6) using www.innatedb.org ⁶⁵ This integrates known interactions and pathways from major public databases.

Table 10	Diseases r	etwork	of the	curated	genes (Fi	gure 5 g	genes)
× * *					J (0	,,

	$-(\cap$	$\rightarrow \rightarrow \rightarrow$	\sim	1
Disease Name	P-value	Corrected P-value	Genes	Annotated Genes
COVID-19	1Æ-18	5.44E-16	5	ACE2,AGT,CCL2,TMPRSS2,TNF
Pneumonia, Viral	1.56E-18	8.46E-16	5	ACE2,AGT,CCL2,TMPRSS2,TNF
Coronaviridae Infections	3 4E-18	1.85E-15	5	ACE2,AGT,CCL2,TMPRSS2,TNF
Coronavirus Infections	3.4E-18	1.85E-15	5	ACE2,AGT,CCL2,TMPRSS2,TNF
Nidevirales Infections	3.4E-18	1.85E-15	5	ACE2,AGT,CCL2,TMPRSS2,TNF
Pneumonia	9.42E-15	5.11E-12	5	ACE2,AGT,CCL2,TMPRSS2,TNF
Respiratory Tract Infections	3.13E-13	1.7E-10	5	ACE2,AGT,CCL2,TMPRSS2,TNF
RNA Virus Infections	2.46E-12	1.34E-09	5	ACE2,AGT,CCL2,TMPRSS2,TNF
Virus Diseases	9.48E-12	5.15E-09	5	ACE2,AGT,CCL2,TMPRSS2,TNF

Figure 6. Network analysis of genes (Figure 5) involved in SARS-COV-2 Infections.

The circled ones are sircle in black. The highlighted ones are SIRT1, AR, and FOS. Gilinsk ⁶⁶ suggested that Vitamin D, as a potential mitigation agent in preventing SARS-COV-2 entry. Metadichol binds to VDR, which controls the expression of FOS ⁶⁷. AR also controls the expression of FOS as well as TMPR\$\$2.

Goren et al ⁶⁸ suggested that SARS-CoV-2 infection is likely to be androgen-mediated. The first step to infectivity is the printing of the spike proteins in SARS-COV-2 by transmembrane protease serine 2 (TMPRSS2), which also cleaves angiotensin-converting enzyme 2 (ACE2) for augmented viral entry. This is seen in the network (Fig 6). Sirt1, which plays an active role in enhancing immunity in viral infections ⁶⁹. The figure generated below using PACO ⁷⁰ below shows the relationship between genes in the network. VDR controls FOS expression, FOS controls AGT, AGT controls expression of AGTR1 and ACE and AR controls expression of TMPRSS2.

FOS proteases like Furin ⁷¹ and Adam-17 have been described to activate the spikes in vitro, for viral spread and pathogenesis in the infected hosts. The VDR controls Furin expression, mediated through its interaction with SRC ⁷². Adam-17 is regulated via CEPBP ^{73,74} which is involved in the regulation of genes involved in immune and inflammatory responses. Recently Ulrich and Pilalt ⁷⁵ proposed that CD147 is

another receptor used as a viral entry like ACE2. CD147 is a known receptor ⁷⁶ for the parasite that causes Malaria in humans "plasmodium falciparum". Interestingly, Metadichol (See Ref 6, US patent 9,006,292) inhibits the malarial parasite.

The key to entry into cells by SARS-COV-2 is ACE2 which, when endocytosed with SARS-CoV, results in a reduction of ACE2 on cells, and an increase of serum AngII⁷⁷. AngII acts as a vasoconstrictor and a proinflammatory cytokine (Figure 1) via AT1R ⁷⁸. The AngII-AT1R axis also activates NF-KB ⁸⁰ SARS-CoV-2 infection in the lungs can activate NF-kB, which can activate the IL 6 increase, leading to multiple inflammatory and autoimmune diseases ⁸¹.

The dysregulation of angiotensin downstream of ACE2 leads to cytokine release that is seen in COVID-19 patients, resulting in increases TNF that leads to IL6, CCl2, NF-KB, and CRR levels. The cytokine storm⁸⁰ results in ARDS (Acute respiratory distress syndrome).

The relationship between the genes in the network shows how Metadichol, by its binding to VDR, leads to a network of genes that are involved in mitigating entry and mitigating SARS COV-2 infection via the Renin-Angiotensin pathway in Figure 7.

Figure 7

Clinical

A pilot study (outside the USA) on five COVID-19 patients with minor symptoms showed the absence of virus after 2-4 days of Metadichol @ 20 mg per day. To validate this further, we have been initiated a study in collaboration with the government agencies. We have expanded the trial on over 100 patients with

Metadichol vs. comparable control groups, with only Standard Care. We hope to communicate these results very shortly.

Summary and Conclusions

Metadichol, as we have shown, blocks entry of ACE2, TMPRSS2, and CD147 through inhibiting malarial parasite and also Furin, whose expression is controlled by VDR. Metadichol is a unique nano lipid emulsion that inhibits many viruses. It has documented ⁸¹ action on multiple genes and proteins that lead to over 2000 unique interactions with other genes and resulting in a network targets many biomarkets and diseases, thereby helping bring about Homeostasis.

Metadichol is a safe, non-toxic product, commercially available for the last six years, with no reported side effects. This advantage allows for use in situations of recurrence of the infections in the future.

References

- 1. Morse, J.S., et al 2020. Learning from the Past. Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV, Chembiochem 21, 730-738.
- 2. Li, G and De Clercq, E., 2020 Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov. 19, 149-150.
- 3. Jerzy Janku, 2020. COVID-19 pandemic; transmembrane protease serine 2 (TMPRSS2) inhibitors as potential therapeutics for SARS-QoV-2 coronavirus. UTIMS, 7, 1-6. <u>https://orcid.org/0000-0003-2354-4046</u>
- 4. I Hamming., et al 2007. The emerging role of ACE2 in physiology and diseases. J Pathol 212: 1–11
- 5. Rabaan A.A., 2017, Middle East respiratory syndrome coronavirus: five years later. Expert Rev Respir Med 11:901-912).
- 6. Zhou Y., et al 2015, Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res 116:76-84.
- Hoffmann M., et al. 2020, SARS- CoV-2 cell entry depends on ACE2 and TMPRSS2. A clinically proven protease inhibitor blocks it Cell 181:1-10.
- 8. Jane S Greatorex., et al. 2010, Effectiveness of Common Household Cleaning Agents in Reducing the Viability of Human Influenza A/H1N1. Plos One, 5(2):e8987. DOI: 10.1371/ journal.pone.0008987.
- 9. Snipes, W., et al. 1977, Inactivation of lipid-containing viruses by long-chain alcohols. Antimicrob. Agents Chemother., 11, 98-104.
- 10. Hilmarsson, H., Kristmundsd ottir, T., and Thormar, H. (2005). Virucidal activities of medium-and long-chain fatty alcohols, fatty acids, and monoglycerides against herpes simplex virus type 1 and 2: comparison at different pH levels. A.P.M.I.S., 113, 58-65.
- 11. Hilmarsson, H. et al. 2006, Virucidal effects of lipids on visna virus, a lentivirus related to H.I.V. Arch. Virol., (151), 1247-1224;
- 12. Hilmarsson, H., Traustason, B.S., Kristmundsd'ottir, T. and Thormar, H. (2007) Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and para influenza virus type 2: comparison at different pH levels. Arch. Virol., 152, 2225-2236.
- 13. Saacs, C.E., Kim, K.S. and Thormar, H. (1994) Inactivation of enveloped viruses in human bodily fluids by purified lipids. Ann. N.Y. Acad. Sci., 724, 457-454.
- 14. Raghavan.P.R., U.S patents 8,722, 094 (2014) ; 9,034,383 (2015) ; 9,006,292(2015).
- 15. Raghavan, P.R., 2016, In vitro Inhibition of Zika Virus by Metadichol®. A Novel Nano Emulsion Lipid, J Immunol Tech Infect Dis 5:4; DOI; 10.4172/2329-9541.1000151
- 16. Raghavan. P.R., 2016, Inhibition of Dengue and other enveloped viruses by Metadichol®, a novel Nanoemulsion Lipid, Journal of the of Healing Outcomes, Vol 8, No 31,19-25.
- Raghavan P.R., 2017, Inhibition of Viruses by Metadichol®: A Novel Nano Emulsion Lipid. Pediatric Infect Dis 1:35. DOI: 10.21767/2573-0282.100035

- 18. Jin, Z. et al. Structure of M pro from COVID-19 virus and discovery of its inhibitors. Nature, (2020). <u>https://doi.org/10.1038/s41586-020-2223-y</u>.
- 19. Yoshiharu Uno 2020, Camostat mesylate therapy for COVID-19Intern E. merg Med. Apr 29: 1-2. DOI: 10.1007/s11739-020-02345-9 [Epub ahead of print].
- 20. Aleman C.L., et al. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. (1994) Toxicol Lett :; 70:77-87.
- 21. Aleman, C.L., et al. 1994, Carcinogenicity of policosanol in Sprague-Dawley rats: A 24-month study.Teratog Carcinog Mutagen: 14:239-49.
- 22. Aleman, C.L et al. 1995. Carcinogenicity of policosanol in mice: An 18-month study
- 23. Raghavan P.R., 2018, Metadichol®, a Novel Agonist of the Anti-aging Klotho Gene in Cancer Cell Lines. J Cancer Sci Ther 10: 351-357.
- 24. Raghavan.P.R., (unpublished results).
- 25. Miriam Merad and Jerome C. Martin, 2020. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages, Nature Reviews, Immunology volume 20, 355.
- 26. Ali Daneshkhah., et al., 2020. The Possible Role of Vitamin D in Suppressing Cytokine Storm and Associated Mortality in COVID-19 Patients. DOI: https://doi.org/10.1101/2020.04.08.20058578).
- 27. Pike, J.W, Christakos, S.2017. Biology, and Mechanisms of Action of the Vitamin D Hormone.Endocrinol. Metab.Clin 46, 815-818
- 28. Liu PT., et al.2009, Convergence of IL 4 beta and VDR activation pathways in human TLR2/1induced antimicrobial responses.PLoS One 4(6):e5810.
- 29. Wang T.T., et al. 2004, Cutting edge, 1,25-dihydroxyitamin D3 is a direct inducer of antimicrobial peptide gene expression.J Immunol 173:2909-2912.
- 30. Zhao, Y, et al.2019, Vitamin D Alleviates Rotavirus Infection through a MicroRNA 155-5p Mediated Regulation of the TBK1/IRF3 Signaling Pathway In Vivo and In Vitro.Int. J. Mol. Sci.,2.
- 31. Martinez-Moreno., et al 2020. Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and evtokine profiles on dendritic cells.Mol. Cell. Biochem 464, 169-181.
- 32. Huang, C.et al.2020 Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, VOLUME 395, ISSUE 10283, P497-506.
- 33. Gombart, A.F.; et al 2020. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection.Nutrients 12(1) 236.
- 34. Cantorna, M.T. 2010. Mechanisms underlying the effect of vitamin D on the immune system. Proc. Nutr. Soc 69, 286-292.
- 35. Lemire, I.M., et al, 1985, 1.25-dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro.J. Immunol 134,3032€"3035.
- 36. Cantorna, M.T., et al. 2015. Vitamin D and 1,25(O.H.)2D regulation of T cells.Nutrients 7, 3041-3020.
- 37. Wang, D et al. 2020 (Dinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus Infected Pneumonia in Wuhan, China.. 323(11):1061-1069.
- 38. Raghavan PR., 2019, The Quest for Immortality. Introducing Metadichol®, a Novel Telomerase Activator. Stem Cell Res Ther 9: 446. DOI: 10.4172/2157-7633.1000446.
- 39. Nan-Ping Weng., 2008, Telomere, and adaptive immunity <u>Mechanisms of Ageing and</u> <u>Development</u> Volume 129 pages 60-66.
- 40. Hodes RJ, et al 2002, Telomeres in T and B cells.Ã, Nat Rev Immunol 2(9):699-706.DOI:10.1038/ nri890.
- 41. Poppe, M., et al 2017, NF-kappaB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog 13, e1006286.
- 42. Giovannoni, F. et al. 2019, AHR. is a Zika virus host factor and a candidate target for antiviral therapy. Nat Neurosci 22, 729-740
- 43. Taisho Yamada., et al, 2016. Constitutive Aryl Hydrocarbon Receptor Signaling Constrains Type I Interferon-Mediated Antiviral Innate DefenseNature immunology 17, 687-694.

- 44. Raghavan P.R , 2017, Metadichol ®. A Novel Inverse Agonist of Aryl Hydrocarbon Receptor (A.H.R.) and NRF2 Inhibitor. J Cancer Sci Ther 9: 661-668. DOI:10.4172/1948-5956.1000489.
- 45. Heuser G, Vojdani A., 1997. Enhancement of natural killer cell activity and T and B cell function by buffered vitamin C in patients exposed to toxic chemicals: protein kinase-C. Immunopharmacol Immunotoxicol. ;19(3):291€"312.
- 46. Furuya A., et al 2008. Antiviral effects of ascorbic and dehydroascorbic acids in vitro. International Journal of molecular medicine.22(4):541-545.
- 47. Kim H, et al. 2016. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection. Journal of Pharmacy and Pharmacology. 68(3):406-420.
- 48. Madhusudana S.N, et al 2004.In vitro inactivation of the rabies vitros by ascorbic acid. International Journal of infectious diseases. 8(1):21
- 49. Alvares O., et al 1981, The effect of subclinical ascerbate deficiency on periodontal health in nonhuman primates. J Periodontal Res. 16(6):6286-36.
- 50. Goldschmidt M.C. et al, 1988. The effect of ascorbic asid deficiency on leukocyte phagocytosis and killing of actinomyces viscosus. Int J Vitam Motr Res 58(3):326€ 34.
- 51. Wintergerst E.S, Maggini S, Hornig D.H., 2006. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab. 50(2):85€"24.
- 52. Woo A., et al.2010, Vitamin C acts indirectly to modulate isotype switching in mouse B cells. Anat Cell Biol.43(1):25€"35.
- 53. Carr A.C, Maggini S., 017, Vitamin C, and Immune Function Nutrients. 9(11),2111.
- 54. Levine M., et al, 1991.Ascorbic acid in human neutrophils. The American journal of clinical nutrition. 54(6 Suppl):1221S-1227S.
- 55. Kuiper.C, Vissers, M.C., 2014, Ascorbate as a contactor for fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol. 2014;4:359.
- 56. Loenarz C, Schofield C.J. 2011, Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by Juman 2-oxoglutarate oxygenases. Trends Biochem Sci.36(1):7-18.
- 57. Flashman E, et al. 2010, Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting INF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents. Biochem J.427(1):135-43.
- 58. Kuiper C., et al. 2014. Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radic Biol Med. 69:308-17.
- 59. Raghavan P.R. 2018, Metadichol®, Vitamin C, and G.U.L.O. Gene Expression in Mouse Adipocytes. Biol Med (Aligara) 10: 426. DOI 10.4172/0974-8369.1000426.
- 60. Raghavan RR., 2017, Metadichol® and Vitamin C Increase In Vivo, an Open-Label Study. Vitam. Miner 6: 163.
- 61. Raghavan P.B (2017) Metadichol® Induced High Levels of Vitamin C: Case Studies. Vitam Miner 6: 169. DQI:10.4172/2376-1318.1000169
- 62. Creixell P, et al., Pathway, and network analysis of cancer genomes. Nat Methods. 2015;12(7):615.;
- 63. Barabasi A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56.
- 64. Davis AP, et al, 2018. The Comparative Toxicogenomics Database: update 2019. Nucleic Acids, Res. <u>RMD:30247620</u>.
- 65. Brever et al.2013. InnateDB. systems biology of innate immunity and beyond recent updates and continuing curation. Nucl. Acids Res. 41 (D1)
- 66. Gennadi V. Glinsky, 2020, Genomics-guided molecular maps of coronavirus targets in human cells: a path toward the repurposing of existing drugs to mitigate the pandemic. 1arXiv:2003.13665v1 [q-bio. G.N.] (pre-print pending peer review)

- 67. Mark B. Meyer., et al 2010. VDR/RXR and TCF4/Î²-catenin cistromes in Colonic Cells of Colorectal Tumor Origin: Impact on c-FOS and c-MYC Gene Expression Molecular Endocrinology, Volume 26, Issue 1, 1 Page 37-51.
- 68. Andy Goren, MD., et al 2020, .Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated J Am Acad Dermatol <u>https://doi.org/10.1016/j.jaad.2020.04.032</u> (in press).
- 69. Zhenghong Lin, et al 2013. Sirt involvement in Virus-mediated diseases, JSM Microbiology 1(2):1006
- 70. Igor Rodchenkov et al., 2020. Pathway Commons 2019 Update: integration, analysis, and exploration of pathway data. Nucleic Acids Research, Volume 48, Issue D1, Pages D489€"D497,
- Ma Y-C, et al. (2012). The Tyrosine Kinase c-Src Directly Mediates Growth Factor-Induced Notch-1 and Furin Interaction and Notch-1 Activation in Pancreatic Cancer Cells. PLoS ONE.7(3): e33414. <u>https://doi.org/10.1371/journal.pone.00334/4</u>.
- <u>C Buitrago</u> et al. 2001. Activation of Src Kinase in Skeletal Muscle Cells by 1, 1,25-(OH(2))-vitamin D(3) Correlates With Tyrosine Phosphorylation of the Vitamin D Receptor (V.D.R.) and VDR-Src Interaction. J Cell Biochem, 2;79(2):274-81.
- 73. <u>Aleksandra Marchwicka</u>, 2018. Regulation of Expression of C/EBPbetaGenes by Variably Expressed Vitamin D Receptor and Retinoic Acid Receptor 1± in Human Acute Myeloid Leukemia Cell Lines. Int J Mol Sci.19(7):1918.
- 74. Arcidiacono MV, Yang J, Fernandez E, et al.2015. The induction of C/EBPbeta contributes to vitamin D inhibition of A.D.A.M. 17 expression and parathyroid hyperplasia in kidney disease. Nephrol Dial Transplant. 30(3):423.
- Henning Ulrich and Micheli M. Pillat., 2020, CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem CellEngagement, Stem Cell Reviews and Reports 16:434–440.
- 76. Crosnier, C., et al. (2011) Basigin is a receptor essential for crythrocyte invasion by Plasmodium falciparum.Nature, 480(7378), \$34–537.<u>https://doi.org/10.1038/rature10606</u>
- 77. Keiji Kuba. 2005. crucial role of angiotensin-converting enzyme 2 (ACE2) in SARS coronavirus€"induced lung injury Nat Med 11, 875-879, https://doi.org/10.1038/nm1267.
- 78. Eguchi.S, et al. 2018. Understanding Angiotensin II Type <u>Receptor Signaling in Vascular</u> <u>Pathophysic Nypertension</u> 71, 804-810.
- 79. Murakami, M., Kamimura, D., and Hirano, T. (2019). Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Sytokines, Immunity 50, 812-831.
- 80. De Wit, C et al 2010, SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev Microbiol. 14, 523-534).
- 81. https://www.researchgate.net/profile/Palayakotai_Raghavan/publications.

Glossary of Gene Descriptions

Gene	description
VDR	vitamin D receptor
AHR	aryl hydrocarbon receptor
TERT	telomerase reverse transcriptase
KL	klotho
PAI1 (SERPINE1)	serpin family E member 1
CCL2	C-C motif chemokine ligand 2
ICAM1	intercellular adhesion molecule 1
TNF	tumor necrosis factor
ACE	angiotensin I converting enzyme
ACE2	angiotensin I converting enzyme 2
AGTR1	angiotensin II receptor type 1
AGTR2	angiotensin Il/receptor type 2
TMPRSS2	Ttansmembrane serine protease 2
SIRT1	sirtuin 1
TNF	tumor necrosis factor
FURIN	furin, paired basic aming acid cleaving enzyme
CD 147 (BSG)	Basigin (BSG) also known as extracellular matrix metalloproteinase inducer
IL6	interleukin 6
IL10	interleukin to
CCL3	C-C motif chemokine ligand 3
14-2	interleukin 2
N 7	hterteukin 7
CSF3	colony stimulating factor 3
H, 2RA	intericukin 2 receptor subunit alpha
CXCL8	C-X-C motif chemokine ligand 8
$\langle (\mathcal{O}) \rangle$	
$\langle \circ \rangle$	